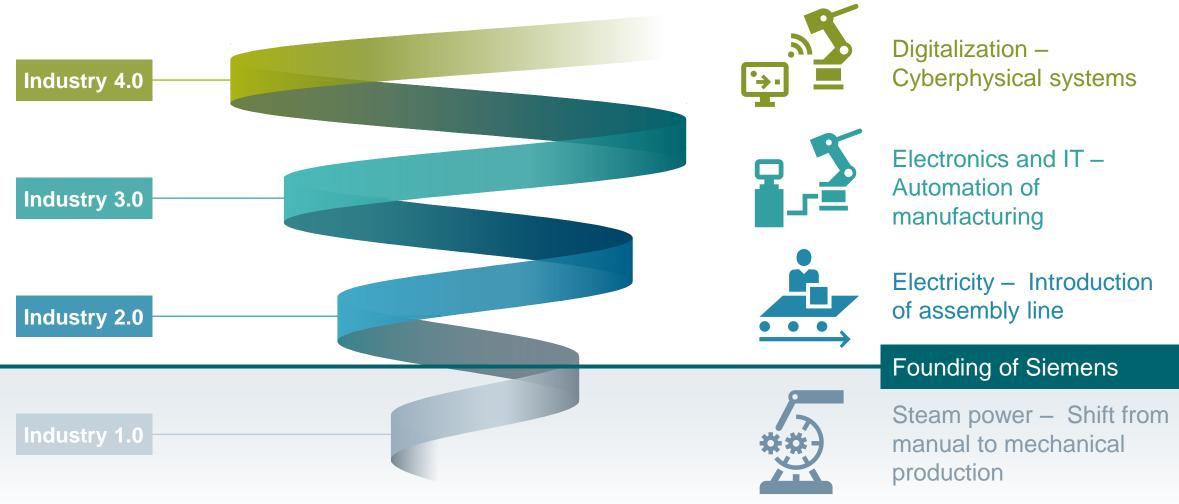


Focus points for today

Siemens and universities

Siemens and Horizon 2020


Siemens' expectations towards Horizon Europe

Siemens and universities

Siemens: an industrial company shaping industrial revolutions since its founding

Unrestricted © Siemens 2019

In the 4th industrial revolution, Siemens R&D is focusing on.....

Additive manufacturing	Autonomous robotics	Blockchain applications	Connected (e)mobility	Connectivity and edge devices
Cybersecurity	Data analytics, artificial intelligence	Distributed energy systems	Energy storage	Future of automation
Materials	Power electronics	Simulation and digital twin	Software systems and processes	

Drivers of University Relations

R&D/ Innovation

Training on Siemens products

- Access to latest academic trends and cutting edge research
- Source for Open Innovation
- Strengthening of Siemens innovative power

- Positive product branding
- On campus NX and Tecnomatix
 Plant Simulation SW-Trainings
- MindSphere

- Positive employer branding on campus
- Build up a talent pipeline
- Hire the right fresh outs
- Co-creation of curricula

Connection of industry and academy and promotion of research and recruiting activities

Drivers of University Relations / examples from Hungary

R&D/ Innovation

Training on Siemens products

HR/Talent Acquisition

- Access to latest academic trends and cutting edge research
- Source for Open Innovation
- Strengthening of Siemens innovative power

- Positive product branding
- On campus NX and Tecnomatix
 Plant Simulation SW-Trainings
- MindSphere

- Positive employer branding on campus
- Build up a talent pipeline
- Hire the right fresh outs
- Co-creation of curricula

Solar Decathlon,
Center for UniversityIndustry cooperation (FIEK)

MindSphere, Labs,
Siemens Digital Industries
Software

Dual education

BME, University of Óbuda,

BGE

Unrestricted © Siemens 2019

Several factors are crucial for a successful strategic university-industry collaboration

Partner choice

- Partners which have a long **history of successful cooperation** and a good relationship among each other (often based on **individual personal relations**)
- Proximity matters
- Interaction with partners on equal terms
- Understanding of cultural differences between university and industry (different incentives, timescale, ...)

Research activities

- Clear goal and clearly defined research agenda
- Fit of research topics to company strategy
- **Balanced mix** of different collaboration methods (contract research (short term & strategic), 3rd party funded research, sponsoring, lectures, colloquia / conferences, expert exchange, ...)
- Quick start of pilot projects

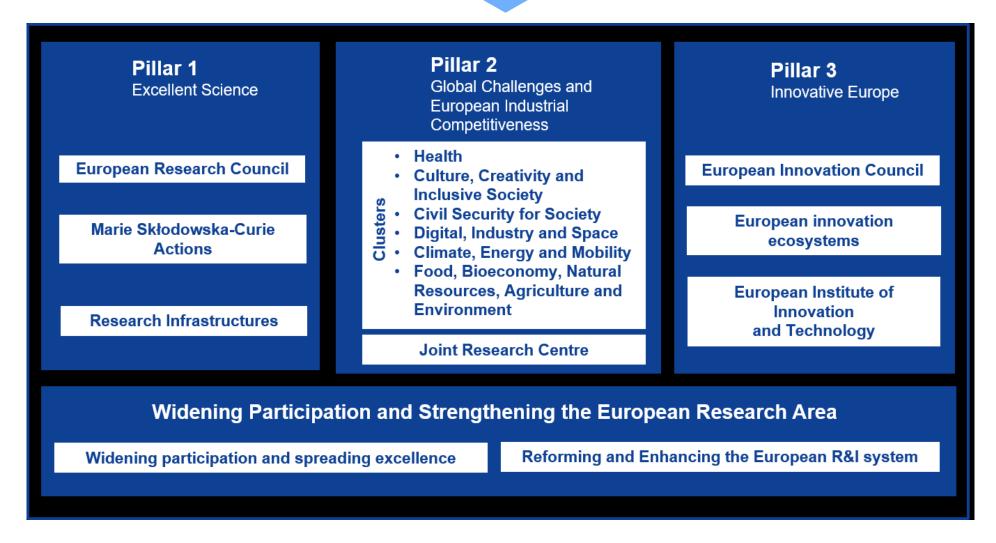
Execution

- Long-term financial commitment
- Steering committee with decision power (and budget) in all participating organizations
- Commitment on working level
- Plenty of opportunities for all campus members to meet personally and exchange ideas
- Resources to coordinate campus activities and communication

Awareness

- Management commitment from all partners
- Broad awareness of campus activities within company and university

...and now, let's widen our Horizon!


Siemens and Horizon 2020

- Currently engaged in 160+ Horizon2020 projects since the beginning of the Framework Programme in 2014 (approximately 50% of these running with Siemens in Germany)
- Strictly following Siemens' own thematic focus of electrification, automation and digitalization
- The key Siemens areas of EU project engagement are:
 - ICT (= Information and Communication Technologies i.e. AI, Cyber-Physical-Systems, Smart Systems, IOT, Big Data, etc.);
 - FOF (= Factories of the Future i.e. Automation, Additive Manufacturing, etc.);
 - MG (= *Mobility for Growth* i.e. Intelligent Rail, Electrification of Public Transport etc.);
 - as well as Energy-related topics (i.e. Hydrogen, Storage, Decentralized Systems etc.)

Horizon Europe: Investing to shape our future

Horizon Europe: 3-Pillar Structure

WHAT should Horizon Europe accomplish, according to Siemens?

- Sustain or re-establish European technological competitiveness in key enabling technologies;
- Bridge the "valley of death" between invention and innovation;
- Drive the digital transformation of European industries;
- Tackle climate change effectively;
- Address major diseases (such as cancer or multiple sclerosis);
- Provide sustainable solutions for affordable, clean and highly secure energy and transportation systems

HOW should this happen? Our expectations are that...

- "Excellence criteria" must prevail
- Added value is needed for the EU (without repetition of national programmes)
- It must be technology-neutral
- The European industry should be strongly involved
- The Mission Boards should include members from the industry
- Missions must be specific and actionable, with measurable and verifiable results

8 general recommendations from Siemens to maximize impact

- 1. Mission driven approach is supported! These missions should be established as a new way to drive breakthrough innovation. They must ensure an interdisciplinary approach & technology neutrality: non- prescriptive (how to achieve the mission). Implementation & financing should go beyond Horizon Europe.
- 2. Further **increase industry participation** in cooperation R&D projects (2/3 R&D exp in EU, only ca. 26% funding goes to Industry). Increasing the number of industry evaluators is needed (e.g. by introducing more remote evaluations).
- 3. Further measures to increase the success rates, to reduce administrative burdens to get more industries on board. Introduce higher flexibility in the calls.
- 4. **Use existing good practices** in PPPs, JTIs or EIT KICs to measure or evaluate impact ("Hard" or "Soft" KPIs)
- 5. Need for systemic innovation to transform whole systems through an interdisciplinary approach KETs must be maintained as building blocks of European R&D funding, (Siemens calls these "CCTs" e.g. Cybersecurity as one of them). (We welcome that Cybersecurity & Artificial Intelligence are added as new KETs but feel that "Simulation & Digital Twin" and some important energy related KETs e.g. "power electronics" are missing)
- 6. Right framework conditions for innovation are needed: a more risk-taking culture, skilled labor force and an innovation-friendly regulatory environment. Consistent application of the "Innovation Principle"
- 7. **For mission-driven R&D, often regulatory/policy initiatives will be needed to stimulate the introduction of new technologies or the phasing out of older ones**, e.g. more polluting technologies, when addressing Climate Change (e.g. EPS of 550 g CO2/KWh).
- 8. Enhanced **coordination/synchronization of EU R&D&I work programs** (H2020/ FP9) and Structural & Cohesion funds (ESIF) & EFSI (Juncker Plan) **with national and regional efforts** (especially for mission-driven R&D)

